
Mod Settings (Modder)

Inhaltsverzeichnis

1 Introduction
2 Defining options
3 Reading options

1 Introduction

I was often annoyed that I had to supply two only slightly different mods or a main mod with submods, when
adjusting a mod to the personal preferences of the users. So I created a simple Lua script (settings.lua),
located in the mod folder, which contains all options in the form option = value.
Code: settings.lua

return {
 option1 = true,
 option2 = 4,
}

This file can either be read directly or with the repective functions of my modutil script (just copy the content
of this archive to the mod folder). The first case is a bit more complicated, which means you should only use
it, if you know Lua quite well. Therefore this tutorial will focus on the second possbility.

2 Defining options

Beacuse editing this file with a texteditor might be to complicated for many users, @Xanos added a new
window to his TPFMM, where the options can be edited with a graphical user interface. A big "thanks" for
that. :thumbup:Image not found or type unknown Of course TPFMM can only display the options, if it knows what options exist and what
values are possible for these options.
We decided to read the required information from the mod.lua, which means it has to be defined there first.
You can do that with the entry settings, in addition to the entry info, whre you can define as many
options as you like:
Code: mod.lua

function data()
 return {
 info = {
 -- ...
 },
 settings = { -- options },
 }
end

Each option can/must have different parameters:

https://www.transportfever.net/lexicon/entry/200-mod-settings-modder/#1-Introduction
https://www.transportfever.net/lexicon/entry/200-mod-settings-modder/#2-Defining-options
https://www.transportfever.net/lexicon/entry/200-mod-settings-modder/#3-Reading-options
https://www.transportfever.net/index.php/Attachment/87750-modutil-zip/
https://www.transportfever.net/index.php/User/18122-Xanos/

Code

option1 = { -- internal ID for this option, used for access later
 type = "number", -- "boolean", "number", "string", "table" (since TPFMM version 1.0.32)
 name = _("Option1"), -- name that will be displayed inside TPFMM (can be translated with the strings.lua)
 -- optional parameters
 description = _(""), -- detailed description, will be displayed as a tooltip
 default = 0, -- default value, if omitted, the following values will be used: false ("boolean"), 0 ("number") or "" ("string")
 min = -2147483647,
 max = 2147483648, -- boundaries for number values (will be ignored for "boolean" and "string")
 values = { -- possible values for multi select (only for type "table")
 {
 text = _("this is a 100"), -- text that will be displayed inside TPFMM
 value = 100, -- which value to add to the table, if this option is selected
 },
 },
},

Alles anzeigen

The option ID should be unique for this mod. In other words, only the last defined option with this ID will be
used.
If not stated otherwise, the given values for the optional parameters are also their default values.

When using the modutil script, it's usefull to store the options inside a variable, which can then be used for
both TPFMM and the script:

Code: mod.lua

local modUtil = require "merk_modutil_1"
local settings_def = {
 option1 = {
 type = "boolean",
 name = _("Option1"),
 },
 option2 = {
 type = "number",
 name = _("Option2"),
 },
}
function data()
 return {
 info = {
 -- ...
 },
 settings = settings_def,
 runFn = function(settings)
 modUtil.userSettings.create("mod_id", settings_def)
 end
 }
end

Alles anzeigen

The line modUtil.userSettings.create("mod_id", settings_def) tells the script, what options it
can expect. In addition, the settings.lua file for this mod will be read (if it exists) and its data will be stored for
later use. "mod_id" is used to link the settings to a specific mod. Therefore two different mods should not
have the same id. That said, I think the name of the mod folder would be a good choice.

2https://www.transportfever.net/lexicon/entry/200-mod-settings-modder/

https://www.transportfever.net/lexicon/entry/200-mod-settings-modder/

3 Reading options

After reading the settings.lua with the script, the values of the options can be accessed every time and in
every script file (runFn inside mod.lua, .con, .mdl, .msh, etc.). If you want to access the options immediately
after the definition (still inside the runFn), I recommend this code:
Code

local options = modUtil.userSettings.get("mod_id")

For all other files, this code is better (otherwise you would have to include the modutil script in every file):

Code

if merk_modutil and merk_modutil[1] then
 local options = merk_modutil[1].userSettings.get("mod_id")
 -- process settings
end

In both cases, "mod_id" decides from which mod the settings are taken. This will likely be the same id as in
"create", but you could also use the settings of another mod (e.g. if your own mod only extends this mod and
therefore uses the same options). To access a single option, you can use options.option1.

3https://www.transportfever.net/lexicon/entry/200-mod-settings-modder/3https://www.transportfever.net/lexicon/entry/200-mod-settings-modder/

https://www.transportfever.net/lexicon/entry/200-mod-settings-modder/
https://www.transportfever.net/lexicon/entry/200-mod-settings-modder/

